...AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE
发布网友
发布时间:2024-10-24 09:52
我来回答
共1个回答
热心网友
时间:2024-11-16 01:37
解:(1)(选证一)△BDE≌△FEC.
证明:∵△ABC是等边三角形,
∴BC=AC,∠ACB=60度.
∵CD=CE,
∴△EDC是等边三角形.
∴DE=EC,∠CDE=∠DEC=60°
∴∠BDE=∠FEC=120度.
又∵EF=AE,
∴BD=FE.
∴△BDE≌△FEC.
(选证二)△BCE≌△FDC.
证明:∵△ABC是等边三角形,
∴BC=AC,∠ACB=60度.
又∵CD=CE,
∴△EDC是等边三角形.
∴∠BCE=∠FDC=60°,DE=CE.
∵EF=AE,
∴EF+DE=AE+CE.
∴FD=AC=BC.
∴△BCE≌△FDC.
(选证三)△ABE≌△ACF.
证明:∵△ABC是等边三角形,
∴AB=AC,∠ACB=∠BAC=60度.
∵CD=CE,∴△EDC是等边三角形.
∴∠AEF=∠CED=60度.
∵EF=AE,△AEF是等边三角形.
∴AE=AF,∠EAF=60度.
∴△ABE≌△ACF.
(2)四边形ABDF是平行四边形.
理由:由(1)知,△ABC、△EDC、△AEF都是等边三角形.
∴∠CDE=∠ABC=∠EFA=60度.
∴AB∥DF,BD∥AF.
∴四边形ABDF是平行四边形.
(3)由(2)知,四边形ABDF是平行四边形.
∴EF∥AB,EF≠AB.
∴四边形ABEF是梯形.
过E作EG⊥AB于G,则EG=23.
∴S四边形ABEF=12EG?(AB+EF)=12×23×(6+4)=103.